Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.196
Filtrar
1.
J Zhejiang Univ Sci B ; 22(9): 718-732, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34514752

RESUMO

This study aimed to uncover underlying mechanisms and promising intervention targets of heart failure (HF)-related stroke. HF-related dataset GSE42955 and stroke-related dataset GSE58294 were obtained from the Gene Expression Omnibus (GEO) database. Weighted gene co-expression network analysis (WGCNA) was conducted to identify key modules and hub genes. Gene Ontology (GO) and pathway enrichment analyses were performed on genes in the key modules. Genes in HF- and stroke-related key modules were intersected to obtain common genes for HF-related stroke, which were further intersected with hub genes of stroke-related key modules to obtain key genes in HF-related stroke. Key genes were functionally annotated through GO in the Reactome and Cytoscape databases. Finally, key genes were validated in these two datasets and other datasets. HF- and stroke-related datasets each identified two key modules. Functional enrichment analysis indicated that protein ubiquitination, Wnt signaling, and exosomes were involved in both HF- and stroke-related key modules. Additionally, ten hub genes were identified in stroke-related key modules and 155 genes were identified as common genes in HF-related stroke. OTU deubiquitinase with linear linkage specificity(OTULIN) and nuclear factor interleukin 3-regulated(NFIL3) were determined to be the key genes in HF-related stroke. Through functional annotation, OTULIN was involved in protein ubiquitination and Wnt signaling, and NFIL3 was involved in DNA binding and transcription. Importantly, OTULIN and NFIL3 were also validated to be differentially expressed in all HF and stroke groups. Protein ubiquitination, Wnt signaling, and exosomes were involved in HF-related stroke. OTULIN and NFIL3 may play a key role in HF-related stroke through regulating these processes, and thus serve as promising intervention targets.


Assuntos
Biologia Computacional/métodos , Insuficiência Cardíaca/complicações , Acidente Vascular Cerebral/etiologia , Fatores de Transcrição de Zíper de Leucina Básica/fisiologia , Fenômenos Biológicos , Endopeptidases/fisiologia , Exossomos/fisiologia , Ontologia Genética , Humanos , Acidente Vascular Cerebral/genética , Função Ventricular Esquerda/fisiologia
2.
Mol Biol Rep ; 48(8): 6075-6083, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34374892

RESUMO

BACKGROUND: Endometrial cancer is generally one of the most evident malignant tumours of the female reproductive system, and the mechanisms underlying its cell proliferation and apoptosis are key to research in gynaecological oncology. In the paper, the in-depth molecular mechanism by which DJ-1 protein regulates the proliferation and apoptosis of Ishikawa cells was investigated. METHODS AND RESULTS: DJ-1 knockdown and overexpressing Ishikawa stable cell lines were established by lentiviral transduction. The levels of DJ-1 and noncanonical NF-κB signaling key proteins were evaluated by Western blotting. Cell counting kit-8 (CCK-8) and flow cytometry were applied to analyze the cell viability and apoptosis. Co-immunoprecipitation experiment was utilized to assess the DJ-1-Cezanne interaction. The results showed that DJ-1 overexpression conferred apoptosis resistance and high proliferation on Ishikawa cells, while DJ-1 knockdown in Ishikawa cells produced the opposite results. These findings again suggested that DJ-1 inhibits the apoptosis and promotes the proliferation of Ishikawa cells. More crucially, further data showed that the noncanonical NF-κB activation was required for the regulation of Ishikawa cell proliferation and apoptosis by DJ-1. Meanwhile, it was found that noncanonical NF-κB pathway may be activated by DJ-1 interacting with and negatively regulating Cezanne in Ishikawa cells. CONCLUSIONS: Overall, this work revealed that DJ-1 associates with and negatively regulates Cezanne and consequently triggers the noncanonical NF-κB activation, thereby regulating Ishikawa cell proliferation and apoptosis.


Assuntos
Neoplasias do Endométrio/metabolismo , NF-kappa B/metabolismo , Proteína Desglicase DJ-1/metabolismo , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Sobrevivência Celular/genética , Neoplasias do Endométrio/genética , Endopeptidases/metabolismo , Endopeptidases/fisiologia , Feminino , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Proteína Desglicase DJ-1/genética , Transdução de Sinais/genética
3.
Theranostics ; 11(16): 7755-7766, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335962

RESUMO

Background: Myocardial infarction (MI) evokes an organized remodeling process characterized by the activation and transdifferentiation of quiescent cardiac fibroblasts to generate a stable collagen rich scar. Early fibroblast activation may be amenable to targeted therapy, but is challenging to identify in vivo. We aimed to non-invasively image active fibrosis by targeting the fibroblast activation protein (FAP) expressed by activated (myo)fibroblasts, using a novel positron emission tomography (PET) radioligand [68Ga]MHLL1 after acute MI. Methods: One-step chemical synthesis and manual as well as module-based radiolabeling yielded [68Ga]MHLL1. Binding characteristics were evaluated in murine and human FAP-transfected cells, and stability tested in human serum. Biodistribution in healthy animals was interrogated by dynamic PET imaging, and metabolites were measured in blood and urine. The temporal pattern of FAP expression was determined by serial PET imaging at 7 d and 21 d after coronary artery ligation in mice as percent injected dose per gram (%ID/g). PET measurements were validated by ex vivo autoradiography and immunostaining for FAP and inflammatory macrophages. Results: [68Ga]MHLL1 displayed specific uptake in murine and human FAP-positive cells (p = 0.0208). In healthy mice the tracer exhibited favorable imaging characteristics, with low blood pool retention and dominantly renal clearance. At 7 d after coronary artery ligation, [68Ga]MHLL1 uptake was elevated in the infarct relative to the non-infarcted remote myocardium (1.3 ± 0.3 vs. 1.0 ± 0.2 %ID/g, p < 0.001) which persisted to 21 d after MI (1.3 ± 0.4 vs. 1.1 ± 0.4 %ID/g, p = 0.013). Excess unlabeled compound blocked tracer accumulation in both infarct and non-infarct remote myocardium regions (p < 0.001). Autoradiography and histology confirmed the regional uptake of [68Ga]MHLL1 in the infarct and especially border zone regions, as identified by Masson trichrome collagen staining. Immunostaining further delineated persistent FAP expression at 7 d and 21 d post-MI in the border zone, consistent with tracer distribution in vivo. Conclusion: The simplified synthesis of [68Ga]MHLL1 bears promise for non-invasive characterization of fibroblast activation protein early in remodeling after MI.


Assuntos
Endopeptidases/metabolismo , Radioisótopos de Gálio/farmacologia , Proteínas de Membrana/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Animais , Autorradiografia/métodos , Linhagem Celular Tumoral , Endopeptidases/fisiologia , Fibroblastos/metabolismo , Fibrose/diagnóstico por imagem , Radioisótopos de Gálio/metabolismo , Humanos , Masculino , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Imagem Molecular/métodos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , Distribuição Tecidual/fisiologia , Tomografia Computadorizada por Raios X/métodos
4.
Cell Death Dis ; 12(6): 619, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34131114

RESUMO

Although endocrine therapies targeting estrogen receptor α (ERα) are effective in managing ER positive (+) breast cancer, many patients have primary resistance or develop resistance to endocrine therapies. In addition, ER+ breast cancer with PIK3CA activating mutations and 11q13-14 amplification have poor survival with unclear mechanism. We uncovered that higher expression of deubiquitinase USP35, located in 11q14.1, was associated with ER+ breast cancer and poor survival. Estrogen enhanced USP35 protein levels by downregulating USP35-targeting miRNA-140-3p and miRNA-26a-5p. USP35 promoted the growth of ER+ breast cancer in vitro and in vivo, and reduced the sensitivity of ER+ breast cancer cells to endocrine therapies such as tamoxifen and fulvestrant. Mechanistically, USP35 enhanced ERα stability by interacting and deubiquitinating ERα, and transcriptional activity of ERα by interacting with ERα in DNA regions containing estrogen response element. In addition, AKT, a key effector of PI3K, phosphorylated USP35 at Serine613, which promoted USP35 nuclear translocation, ERα transcriptional activity, and the growth of ER+ breast cancer cells. Our data indicate that USP35 and ERα form a positive feedback loop in promoting the growth of ER+ breast cancer. USP35 may be a treatment target for ER+ breast cancer with endocrine resistance or with PIK3CA mutations or hyperactivation of the PI3K pathway.


Assuntos
Neoplasias da Mama/genética , Endopeptidases/fisiologia , Estradiol/farmacologia , Receptor alfa de Estrogênio/genética , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Carcinogênese/metabolismo , Endopeptidases/genética , Receptor alfa de Estrogênio/efeitos dos fármacos , Receptor alfa de Estrogênio/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Células MCF-7 , Camundongos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas
5.
Cell Death Dis ; 12(6): 534, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035221

RESUMO

Breast cancer is the most common malignancy in women worldwide. Estrogen receptor α (ERα) is expressed in ∼70% of breast cancer cases and promotes estrogen-dependent cancer progression. In the present study, we identified OTU domain-containing 7B (OTUD7B), a deubiquitylase belonging to A20 subgroup of ovarian tumor protein superfamily, as a bona fide deubiquitylase of ERα in breast cancer. OTUD7B expression was found to be positively correlated with ERα in breast cancer and associated with poor prognosis. OTUD7B could interact with, deubiquitylate, and stabilize ERα in a deubiquitylation activity-dependent manner. Depletion of OTUD7B decreased ERα protein level, the expression of ERα target genes, and the activity of estrogen response element in breast cancer cells. In addition, OTUD7B depletion significantly decreased ERα-positive breast cancer cell proliferation and migration. Finally, overexpression of ERα could rescue the suppressive effect induced by OTUD7B depletion, suggesting that the ERα status was essential to the function of OTUD7B in breast carcinogenesis. In conclusion, our study revealed an interesting post-translational mechanism between ERα and OTUD7B in ERα-positive breast cancer. Targeting the OTUD7B-ERα complex may prove to be a potential approach to treat patients with ERα-positive breast cancer.


Assuntos
Neoplasias da Mama/patologia , Endopeptidases/fisiologia , Receptor alfa de Estrogênio/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Células HEK293 , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Processamento de Proteína Pós-Traducional/genética , Estabilidade Proteica , Ubiquitinação/genética
6.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33850024

RESUMO

We describe the development of OncoFAP, an ultra-high-affinity ligand of fibroblast activation protein (FAP) for targeting applications with pan-tumoral potential. OncoFAP binds to human FAP with affinity in the subnanomolar concentration range and cross-reacts with the murine isoform of the protein. We generated various fluorescent and radiolabeled derivatives of OncoFAP in order to study biodistribution properties and tumor-targeting performance in preclinical models. Fluorescent derivatives selectively localized in FAP-positive tumors implanted in nude mice with a rapid and homogeneous penetration within the neoplastic tissue. Quantitative in vivo biodistribution studies with a lutetium-177-labeled derivative of OncoFAP revealed a preferential localization in tumors at doses of up to 1,000 nmol/kg. More than 30% of the injected dose had already accumulated in 1 g of tumor 10 min after intravenous injection and persisted for at least 3 h with excellent tumor-to-organ ratios. OncoFAP also served as a modular component for the generation of nonradioactive therapeutic products. A fluorescein conjugate mediated a potent and FAP-dependent tumor cell killing activity in combination with chimeric antigen receptor (CAR) T cells specific to fluorescein. Similarly, a conjugate of OncoFAP with the monomethyl auristatin E-based Vedotin payload was well tolerated and cured tumor-bearing mice in combination with a clinical-stage antibody-interleukin-2 fusion. Collectively, these data support the development of OncoFAP-based products for tumor-targeting applications in patients with cancer.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Endopeptidases/química , Endopeptidases/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Animais , Linhagem Celular Tumoral , Endopeptidases/fisiologia , Fibroblastos , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Marcação por Isótopo , Ligantes , Lutécio/química , Masculino , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Nus , Neoplasias/metabolismo , Quinolinas/química , Radioisótopos/química , Compostos Radiofarmacêuticos , Distribuição Tecidual/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
7.
J Virol ; 95(14): e0032121, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-33883227

RESUMO

Phage (endo)lysins are thought to be a viable alternative to usual antibiotic chemotherapy to fight resistant bacterial infections. However, a comprehensive view of lysins' structure and properties regarding their function, with an applied focus, is somewhat lacking. Current literature suggests that specific features typical of lysins from phages infecting Gram-negative bacteria (G-) (higher net charge and amphipathic helices) are responsible for improved interaction with the G- envelope. Such antimicrobial peptide (AMP)-like elements are also of interest for antimicrobial molecule design. Thus, this study aims to provide an updated view on the primary structural landscape of phage lysins to clarify the evolutionary importance of several sequence-predicted properties, particularly for the interaction with the G- surface. A database of 2,182 lysin sequences was compiled, containing relevant information such as domain architectures, data on the phages' host bacteria, and sequence-predicted physicochemical properties. Based on such classifiers, an investigation of the differential appearance of certain features was conducted. This analysis revealed different lysin architectural variants that are preferably found in phages infecting certain bacterial hosts. In particular, some physicochemical properties (higher net charge, hydrophobicity, hydrophobic moment, and aliphatic index) were associated with G- phage lysins, appearing specifically at their C-terminal end. Information on the remarkable genetic specialization of lysins regarding the features of the bacterial hosts is provided, specifically supporting the nowadays-common hypothesis that lysins from G- usually contain AMP-like regions. IMPORTANCE Phage-encoded lytic enzymes, also called lysins, are one of the most promising alternatives to common antibiotics. The potential of lysins as novel antimicrobials to tackle antibiotic-resistant bacteria not only arises from features such as a lower chance to provoke resistance but also from their versatility as synthetic biology parts. Functional modules derived from lysins are currently being used for the design of novel antimicrobials with desired properties. This study provides a view of the lysin diversity landscape by examining a set of phage lysin genes. We have uncovered the fundamental differences between the lysins from phages that infect bacteria with different superficial architectures and, thus, the reach of their specialization regarding cell wall structures. These results provide clarity and evidence to sustain some of the common hypotheses in current literature, as well as making available an updated and characterized database of lysins sequences for further developments.


Assuntos
Antibacterianos , Bacteriófagos/genética , Parede Celular/enzimologia , Endopeptidases/genética , Antibacterianos/farmacologia , Bactérias/enzimologia , Bactérias/genética , Bactérias/virologia , Endopeptidases/química , Endopeptidases/farmacologia , Endopeptidases/fisiologia , Domínios Proteicos , Relação Estrutura-Atividade
8.
Cancer Lett ; 504: 104-115, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33587979

RESUMO

Macrophages, which are highly plastic, can be polarized to M1 or M2 subtypes according to the diverse signals in complex microenvironment. Studies have shown the activation of YAP, an oncogenic transcriptional co-activator, increased macrophage recruitment. However, its role in macrophage polarization remains to be elucidated, especially in triple-negative breast cancer (TNBC) progression. Here we found TNBC cells increased YAP expression in macrophages, which depended on OTUD5-mediated deubiquitination and stabilization of YAP, then the high expression of YAP polarized macrophage to the M2-like phenotype. Moreover, the elevation of YAP in M2-like macrophage promotes the pro-metastatic potential of TNBC cells via MCP-1/CCR2 pathway. We also observed high expression of YAP in M2 macrophage was negatively related to survival. Collectively, our finding suggested the therapeutic strategy that targets YAP+ M2 macrophage could be a novel option for TNBC treatment.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Polaridade Celular , Endopeptidases/fisiologia , Macrófagos/patologia , Fatores de Transcrição/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Macrófagos/metabolismo , Pessoa de Meia-Idade , Invasividade Neoplásica , Prognóstico , Ubiquitinação
10.
Autophagy ; 17(7): 1684-1699, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32543267

RESUMO

Macroautophagy/autophagy is a membrane-mediated intracellular degradation pathway, through which bulky cytoplasmic content is digested in lysosomes. How the autophagy initiation and maturation steps are regulated is not clear. In this study, we found an E3 ubiquitin ligase complex, linear ubiquitin chain assembly complex (LUBAC) and a deubiquitinating enzyme (DUB) OTULIN localize to the phagophore area to control autophagy initiation and maturation. LUBAC key component RNF31/HOIP translocates to the LC3 puncta area when autophagy is induced. RNF31 knockdown inhibits autophagy initiation, and cells are more sensitive to bacterial infection. OTULIN knockdown, however, promotes autophagy initiation but blocks autophagy maturation. In OTULIN knockdown cells, excessive ubiquitinated ATG13 protein was recruited to the phagophore for prolonged expansion, and therefore inhibits autophagosome maturation. Together, our study provides evidence that LUBAC and OTULIN cooperatively regulate autophagy initiation and autophagosome maturation by mediating the linear ubiquitination and the stabilization of ATG13.Abbreviations: ATG: autophagy-related; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CQ: chloroquine; CUL1-FBXL20: cullin 1-F-box and leucine rich repeat protein 20; CUL3-KLHL20: cullin 3-kelch like family member 20; CUL4-AMBRA1: cullin 4-autophagy and beclin 1 regulator 1; CYLD: CYLD lysine 63 deubiquitinase; DAPI: 4',6-diamidino-2-phenylindole; DUB: deubiquitinating enzyme; EBSS: Earle's Balanced Salt Solution; GFP: green fluorescent protein; GST: glutathione S-transferase; IKBKG/NEMO: inhibitor of nuclear factor kappa B kinase regulatory subunit gamma; LUBAC: linear ubiquitin chain assembly complex; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3B; MIM: MIT-interacting motif; mRFP: monomeric red fluorescent protein; NEDD4: NEDD4 E3 ubiquitin protein ligase; NFKB: NF-kappaB complex; OPTN: optineurin; OTULIN: OTU deubiquitinase with linear linkage specificity; PIK3C3/Vps34: phosphatidylinositol 3-kinase catalytic subunit type 3; PtdIns: phosphatidylinositol; PtdIns3K: class III phosphatidylinositol 3-kinase complex; PtdIns3P: phosphatidylinositol 3-phosphate; RBCK1/HOIL1: RANBP2-type and C3HC4-type zinc finger containing 1; RB1CC1/FIP200: RB1-inducible coiled-coil 1; RIPK1: receptor interacting serine/threonine kinase 1; RNF216: ring finger protein 216; RNF31/HOIP: ring finger protein 31; RT-PCR: reverse transcriptase polymerase chain reaction; S. Typhimurium: Salmonella enterica serovar Typhimurium; SHARPIN: SHANK associated RH domain interactor; SMURF1: SMAD specific E3 ubiquitin protein ligase 1; SQSTM1: sequestosome 1; STING: stimulator of interferon response cGAMP interactor 1; STUB1/CHIP: STIP1 homology and U-box containing protein 1; TNF/TNF-alpha: tumor necrosis factor; TNFAIP3/A20: TNF alpha induced protein 3; TRAF6: TNF receptor associated factor 6; TRIM32: tripartite motif containing 32; UBAN: ubiquitin binding in TNIP/ABIN and IKBKG/NEMO proteins; ULK1/2: unc-51 like autophagy activating kinase 1/2; USP: ubiquitin specific peptidase; UVRAG: UV radiation resistance associated; VCPIP1: valosin containing protein interacting protein 1; WIPI2: WD repeat domain, phosphoinositide interacting protein 2; ZBTB16-CUL3-RBX1: zinc finger and BTB domain containing protein 16-cullin 3-ring-box 1; ZRANB1: zinc finger RANBP2-type containing 1.


Assuntos
Autofagia , Endopeptidases/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Endopeptidases/fisiologia , Técnicas de Silenciamento de Genes , Células HEK293 , Células HeLa , Humanos , Microscopia de Fluorescência , Complexos Ubiquitina-Proteína Ligase/fisiologia , Ubiquitinação
11.
J Cell Mol Med ; 24(18): 10946-10957, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32798288

RESUMO

Ubiquitin-specific protease 19 (USP19) belongs to USP family and is involved in promoting skeletal muscle atrophy. Although USP19 is expressed in the heart, the role of USP19 in the heart disease remains unknown. The present study provides in vivo and in vitro data to reveal the role of USP19 in preventing pathological cardiac hypertrophy. We generated USP19-knockout mice and isolated neonatal rat cardiomyocytes (NRCMs) that overexpressed or were deficient in USP19 to investigate the effect of USP19 on transverse aortic constriction (TAC) or phenylephrine (PE)-mediated cardiac hypertrophy. Echocardiography, pathological and molecular analysis were used to determine the extent of cardiac hypertrophy, fibrosis, dysfunction and inflammation. USP19 expression was markedly increased in rodent hypertrophic heart or cardiomyocytes underwent TAC or PE culturing, the increase was mediated by the reduction of Seven In Absentia Homolog-2. The extent of TAC-induced cardiac hypertrophy, fibrosis, dysfunction and inflammation in USP19-knockout mice was exacerbated. Consistently, gain-of-function and loss-of-function approaches that involved USP19 in cardiomyocytes suggested that the down-regulation of USP19 promoted the hypertrophic phenotype, while the up-regulation of USP19 improved the worsened phenotype. Mechanistically, the USP19-elicited cardiac hypertrophy improvement was attributed to the abrogation of the transforming growth factor beta-activated kinase 1 (TAK1)-p38/JNK1/2 transduction. Furthermore, the inhibition of TAK1 abolished the aggravated hypertrophy induced by the loss of USP19. In conclusion, the present study revealed that USP19 and the downstream of TAK1-p38/JNK1/2 signalling pathway might be a potential target to attenuate pathological cardiac hypertrophy.


Assuntos
Cardiomegalia/fisiopatologia , Endopeptidases/fisiologia , MAP Quinase Quinase Quinases/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Miócitos Cardíacos/enzimologia , Angiotensina II/toxicidade , Animais , Animais Recém-Nascidos , Estenose da Valva Aórtica , Sistemas CRISPR-Cas , Cardiomegalia/induzido quimicamente , Cardiomegalia/diagnóstico por imagem , Modelos Animais de Doenças , Endopeptidases/biossíntese , Endopeptidases/deficiência , Endopeptidases/genética , Fibrose , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Fenilefrina/farmacologia , Pressão , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Remodelação Ventricular/fisiologia
12.
Theranostics ; 10(13): 5778-5789, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32483418

RESUMO

Background: Cancer-associated fibroblasts (CAFs) comprise a major cell type in the tumor microenvironment where they support tumor growth and survival by producing extracellular matrix, secreting immunosuppressive cytokines, releasing growth factors, and facilitating metastases. Because tumors with elevated CAFs are characterized by poorer prognosis, considerable effort is focused on developing methods to quantitate, suppress and/or eliminate CAFs. We exploit the elevated expression of fibroblast activation protein (FAP) on CAFs to target imaging and therapeutic agents selectively to these fibroblasts in solid tumors. Methods: FAP-targeted optical imaging, radioimaging, and chemotherapeutic agents were synthesized by conjugating FAP ligand (FL) to either a fluorescent dye, technetium-99m, or tubulysin B hydrazide. In vitro and in vivo studies were performed to determine the specificity and selectivity of each conjugate for FAP in vitro and in vivo. Results: FAP-targeted imaging and therapeutic conjugates showed high binding specificity and affinity in the low nanomolar range. Injection of FAP-targeted 99mTc into tumor-bearing mice enabled facile detection of tumor xenografts with little off-target uptake. Optical imaging of malignant lesions was also readily achieved following intravenous injection of FAP-targeted near-infrared fluorescent dye. Finally, systemic administration of a tubulysin B conjugate of FL promoted complete eradication of solid tumors with no evidence of gross toxicity to the animals. Conclusion: In view of the near absence of FAP on healthy cells, we conclude that targeting of FAP on cancer-associated fibroblasts can enable highly specific imaging and therapy of solid tumors.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Endopeptidases/metabolismo , Proteínas de Membrana/metabolismo , Microambiente Tumoral/fisiologia , Animais , Antineoplásicos/metabolismo , Fibroblastos Associados a Câncer/fisiologia , Linhagem Celular Tumoral , Endopeptidases/genética , Endopeptidases/fisiologia , Feminino , Fibroblastos/metabolismo , Corantes Fluorescentes/química , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Nus , Camundongos SCID , Imagem Óptica/métodos , Tomografia Computadorizada de Emissão de Fóton Único/métodos
13.
J Virol ; 94(13)2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32295921

RESUMO

Foot-and-mouth disease virus (FMDV) leader proteinase (Lpro) affects several pathways of the host innate immune response. Previous studies in bovine cells demonstrated that deletions (leaderless [LLV]) or point mutations in Lpro result in increased expression of interferon (IFN) and IFN-stimulated genes (ISGs), including, among others, the ubiquitin-like protein modifier ISG15 and the ubiquitin specific peptidase USP18. In addition to its conventional papain-like protease activity, Lpro acts as a deubiquitinase (DUB) and deISGylase. In this study, we identified a conserved residue in Lpro that is involved in its interaction with ISG15. Mutation W105A rendered Escherichia coli-expressed Lpro unable to cleave the synthetic substrate pro-ISG15 while preserving cellular eIF4G cleavage. Interestingly, mutant FMDV W105A was viable. Overexpression of ISG15 and the ISGylation machinery in porcine cells resulted in moderate inhibition of FMDV replication, along with a decrease of the overall state of ISGylation in wild-type (WT)-infected cells. In contrast, reduced deISGylation was observed upon infection with W105A and leaderless virus. Reduction in the levels of deubiquitination was also observed in cells infected with the FMDV LproW105A mutant. Surprisingly, similarly to WT, infection with W105A inhibited IFN/ISG expression despite displaying an attenuated phenotype in vivo in mice. Altogether, our studies indicate that abolishing/reducing the deISGylase/DUB activity of Lpro causes viral attenuation independently of its ability to block the expression of IFN and ISG mRNA. Furthermore, our studies highlight the potential of ISG15 to be developed as a novel biotherapeutic molecule against FMD.IMPORTANCE In this study, we identified an aromatic hydrophobic residue in foot-and-mouth disease virus (FMDV) leader proteinase (Lpro) (W105) that is involved in the interaction with ISG15. Mutation in Lpro W105 (A12-LproW105A) resulted in reduced deISGylation in vitro and in porcine-infected cells. Impaired deISGylase activity correlated with viral attenuation in vitro and in vivo and did not affect the ability of Lpro to block expression of type I interferon (IFN) and other IFN-stimulated genes. Moreover, overexpression of ISG15 resulted in the reduction of FMDV viral titers. Thus, our study highlights the potential use of Lpro mutants with modified deISGylase activity for development of live attenuated vaccine candidates, and ISG15 as a novel biotherapeutic against FMD.


Assuntos
Endopeptidases/genética , Endopeptidases/metabolismo , Vírus da Febre Aftosa/genética , Animais , Antivirais/metabolismo , Linhagem Celular , Citocinas/metabolismo , Endopeptidases/fisiologia , Feminino , Febre Aftosa/virologia , Vírus da Febre Aftosa/metabolismo , Vírus da Febre Aftosa/patogenicidade , Células HEK293 , Humanos , Imunidade Inata , Interferon Tipo I/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteólise , Serina Endopeptidases/metabolismo , Suínos , Ubiquitinas/metabolismo , Vacinas Atenuadas/imunologia
14.
J Biosci Bioeng ; 129(4): 423-427, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31640922

RESUMO

In the yeast Saccharomyces cerevisiae, the transcriptional factor Msn2 plays an essential role in response to a variety of environmental stresses by activating the transcription of many genes that contain the stress-responsive elements in the promoters. We previously reported that overexpression of the MSN2 gene confers tolerance to various stresses in industrial yeast strains. Recently, the overexpression of MSN2 was shown to increase the amount of the amino acid permease Gnp1 on the plasma membrane, leading to the increased uptake of proline into the cell, suggesting a novel link between the Msn2-mediated stress response and amino acid homeostasis in yeast. Here, we found that overexpression of MSN2 increased ubiquitinated protein levels with reduced free ubiquitin. Among deubiquitinating enzymes (DUBs), it was revealed that the loss of Ubp6 depleted the free ubiquitin level and decreased tolerance to the toxic amino acid analogues. The overexpression of UBP6 in MSN2-overexpressing cells clearly complemented the impaired tolerance towards the toxic amino acid analogues. Both the protein level and the plasma-membrane localization of Gnp1 were increased in ubp6-deleted cells, as shown in MSN2-overexpressing cells. These results suggest that an excess level of Msn2 impairs endocytic degradation of Gnp1 through dysfunction of Ubp6 and other DUBs.


Assuntos
Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Proteínas de Ligação a DNA/fisiologia , Endopeptidases/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae , Estresse Fisiológico/fisiologia , Fatores de Transcrição/fisiologia , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/genética , Proteínas de Ligação a DNA/genética , Enzimas Desubiquitinantes/fisiologia , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Organismos Geneticamente Modificados , Proteólise , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Ubiquitina/metabolismo
15.
Biochem Soc Trans ; 47(6): 1867-1879, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31845722

RESUMO

Protein modification by ubiquitin is one of the most versatile posttranslational regulations and counteracted by almost 100 deubiquitinating enzymes (DUBs). USP8 was originally identified as a growth regulated ubiquitin-specific protease and is like many other DUBs characterized by its multidomain architecture. Besides the catalytic domain, specific protein-protein interaction modules were characterized which contribute to USP8 substrate recruitment, regulation and targeting to distinct protein complexes. Studies in mice and humans impressively showed the physiological relevance and non-redundant function of USP8 within the context of the whole organism. USP8 knockout (KO) mice exhibit early embryonic lethality while induced deletion in adult animals rapidly causes lethal liver failure. Furthermore, T-cell specific ablation disturbs T-cell development and function resulting in fatal autoimmune inflammatory bowel disease. In human patients, somatic mutations in USP8 were identified as the underlying cause of adrenocorticotropic hormone (ACTH) releasing pituitary adenomas causing Cushing's disease (CD). Here we provide an overview of the versatile molecular, cellular and pathology associated function and regulation of USP8 which appears to depend on specific protein binding partners, substrates and the cellular context.


Assuntos
Enzimas Desubiquitinantes/metabolismo , Endopeptidases/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Ubiquitina Tiolesterase/metabolismo , Animais , Apoptose/fisiologia , Autofagia/fisiologia , Cílios/metabolismo , Endopeptidases/genética , Endopeptidases/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/fisiologia , Endossomos/metabolismo , Humanos , Camundongos , Camundongos Knockout , Mitofagia/fisiologia , Mutação , Hipersecreção Hipofisária de ACTH/genética , Ligação Proteica , Transdução de Sinais , Linfócitos T/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/fisiologia
16.
Science ; 366(6469): 1150-1156, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31780561

RESUMO

To understand membrane protein biogenesis, we need to explore folding within a bilayer context. Here, we describe a single-molecule force microscopy technique that monitors the folding of helical membrane proteins in vesicle and bicelle environments. After completely unfolding the protein at high force, we lower the force to initiate folding while transmembrane helices are aligned in a zigzag manner within the bilayer, thereby imposing minimal constraints on folding. We used the approach to characterize the folding pathways of the Escherichia coli rhomboid protease GlpG and the human ß2-adrenergic receptor. Despite their evolutionary distance, both proteins fold in a strict N-to-C-terminal fashion, accruing structures in units of helical hairpins. These common features suggest that integral helical membrane proteins have evolved to maximize their fitness with cotranslational folding.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Endopeptidases/fisiologia , Proteínas de Escherichia coli/fisiologia , Proteínas de Membrana/fisiologia , Dobramento de Proteína , Receptores Adrenérgicos beta 2/fisiologia , Evolução Biológica , Escherichia coli/metabolismo , Humanos , Modelos Moleculares , Conformação Proteica , Modificação Traducional de Proteínas , Imagem Individual de Molécula
17.
Endocrinology ; 160(8): 1982-1998, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31199479

RESUMO

Leptin has neurotrophic actions in the hippocampus to increase synapse formation and stimulate neuronal plasticity. Leptin also enhances cognition and has antidepressive and anxiolytic-like effects, two hippocampal-dependent behaviors. In contrast, mice lacking leptin or the long form of the leptin receptor (LepRb) have lower cortical volume and decreased memory and exhibit depressive-like behaviors. A number of the signaling pathways regulated by LepRb are known, but how membrane LepRb levels are regulated in the central nervous system is not well understood. Here, we show that the lysosomal inhibitor chloroquine increases LepRb expression in hippocampal cultures, suggesting that LepRb is degraded in the lysosome. Furthermore, we show that leptin increases surface expression of its own receptor by decreasing the level of ubiquitinated LepRbs. This decrease is mediated by the deubiquitinase ubiquitin-specific protease 8 (USP8), which we show is in complex with LepRb. Acute leptin stimulation increases USP8 activity. Moreover, leptin stimulates USP8 gene expression through cAMP response element-binding protein (CREB)-dependent transcription, an effect blocked by expression of a dominant-negative CREB or with short hairpin RNA knockdown of CREB. Increased expression of USP8 causes increased surface localization of LepRb, which in turn enhances leptin-mediated activation of the MAPK kinase/extracellular signal-regulated kinase pathway and CREB activation. Lastly, increased USP8 expression increases glutamatergic synapse formation in hippocampal cultures, an effect dependent on expression of LepRbs. Leptin-stimulated synapse formation also requires USP8. In conclusion, we show that USP8 deubiquitinates LepRb, thus inhibiting lysosomal degradation and enhancing surface localization of LepRb, which are essential for leptin-stimulated synaptogenesis in the hippocampus.


Assuntos
Endopeptidases/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/fisiologia , Leptina/farmacologia , Receptores para Leptina/metabolismo , Sinapses/fisiologia , Ubiquitina Tiolesterase/fisiologia , Ubiquitinação , Animais , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/fisiologia , Endopeptidases/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Células HEK293 , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Ubiquitina Tiolesterase/genética
18.
Nucleic Acids Res ; 47(13): 7035-7048, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31114929

RESUMO

The eIF4E-homologous protein (4EHP) is a translational repressor that competes with eIF4E for binding to the 5'-cap structure of specific mRNAs, to which it is recruited by protein factors such as the GRB10-interacting GYF (glycine-tyrosine-phenylalanine domain) proteins (GIGYF). Several experimental evidences suggest that GIGYF proteins are not merely facilitating 4EHP recruitment to transcripts but are actually required for the repressor activity of the complex. However, the underlying molecular mechanism is unknown. Here, we investigated the role of the uncharacterized Drosophila melanogaster (Dm) GIGYF protein in post-transcriptional mRNA regulation. We show that, when in complex with 4EHP, Dm GIGYF not only elicits translational repression but also promotes target mRNA decay via the recruitment of additional effector proteins. We identified the RNA helicase Me31B/DDX6, the decapping activator HPat and the CCR4-NOT deadenylase complex as binding partners of GIGYF proteins. Recruitment of Me31B and HPat via discrete binding motifs conserved among metazoan GIGYF proteins is required for downregulation of mRNA expression by the 4EHP-GIGYF complex. Our findings are consistent with a model in which GIGYF proteins additionally recruit decapping and deadenylation complexes to 4EHP-containing RNPs to induce translational repression and degradation of mRNA targets.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/genética , Fator de Iniciação 4E em Eucariotos/fisiologia , Regulação da Expressão Gênica , Proteínas de Ligação ao Cap de RNA/fisiologia , RNA Mensageiro/genética , Proteínas Repressoras/fisiologia , Sequência de Aminoácidos , Animais , Sequência Conservada , RNA Helicases DEAD-box/fisiologia , Regulação para Baixo , Endopeptidases/fisiologia , Genes Reporter , Complexos Multiproteicos , Biossíntese de Proteínas , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , Estabilidade de RNA/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/fisiologia , Ribonucleases/fisiologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
19.
Med Sci Monit ; 25: 3469-3475, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31075090

RESUMO

BACKGROUND The aim of this study was to investigate the role of deubiquitinase [ovarian tumor domain-containing protein 5 (OTUD5)] in regulating Akt ubiquitination and its effect on the radiosensitivity of cervical cancer. MATERIAL AND METHODS Cervical cancer C33A cells were cultured, and then 2 groups of cells (overexpressed cells and silenced cells) were established by overexpressing and silencing OTUD5 gene. Next, quantitative polymerase chain reaction (qPCR) was employed to detect the expression level of OTUD5 in cells in each group. Co-immunoprecipitation and Western blot (WB) analysis were applied to measure the expression level of phosphorylated protein kinase B (Akt) and the level of ubiquitination. The sensitivity of cells to radiotherapy in each group was detected via clone-forming efficiency assay. After that, Statistical Product and Service Solutions (SPSS) 17.0 software was employed for analyses. The t test, one-way analysis of variance (ANOVA), and p test were used. P<0.05 suggested that a difference was statistically significant. RESULTS The levels of phosphorylated Akt and ubiquitination in OTUD5-overexpressed C33A cells were lower than those in the OTUD5-silenced group and control group. The sensitivity of OTUD5-overexpressed C33A cells to radiotherapy was higher than that of the OTUD5-silenced group and control group. CONCLUSIONS OTUD5 affects the radiosensitivity of cervical cancer through the regulation of Akt deubiquitination.


Assuntos
Endopeptidases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias do Colo do Útero/metabolismo , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Enzimas Desubiquitinantes/metabolismo , Endopeptidases/fisiologia , Feminino , Inativação Gênica , Humanos , Neoplasias Ovarianas/genética , RNA Interferente Pequeno , Tolerância a Radiação/genética , Tolerância a Radiação/fisiologia , Transdução de Sinais , Ubiquitinação , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/radioterapia
20.
Brain Res ; 1719: 40-48, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31075263

RESUMO

Sepsis-associated encephalopathy (SAE) is a common and serious complication of sepsis, which is thought to be caused by neuroinflammation. In our previous study, ubiquitin-specific protease 8 (USP8), was reported to regulate inflammation in vitro. In the current study, we investigated whether increased USP8 expression would ameliorate the cognitive and motor impairments induced by cecal ligation and puncture (CLP) in mice, a model of SAE. Male adult mice were randomly divided into four groups: control, sham, CLP, and CLP + USP8 groups. The CLP + USP8 mice showed reduced weight loss on day 4 post-CLP, with a slight increase noted on day 7. The mortality rate in the CLP group was 70% 48 h after CLP; however, USP8 significantly improved survival after CLP. USP8 modulated the neurobehavioral scores in CLP mice. Our results also indicate that USP8 attenuated the CLP-induced cognitive and motor impairments, based on the performance of mice in the Morris water maze (MWM), pole-climbing, and wire suspension tests. USP8 suppressed the release of pro-inflammatory mediators, including prostaglandin E2(PGE2) in the serum and nitric oxide (NO) in brain tissue, as well as levels of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) in brain tissue. Immunofluorescence experiments revealed that USP8 inhibited CLP-induced increases in microglial size and density in the hippocampus, and protected hippocampal neurons. Our findings indicate that neuroinflammation occurs in the brains of CLP mice, and that USP8 exerts protective effects against CLP-induced neuroinflammation and cognitive and motor impairments, which may aid in the development of novel therapeutic strategies for SAE.


Assuntos
Endopeptidases/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Encefalopatia Associada a Sepse/fisiopatologia , Ubiquitina Tiolesterase/metabolismo , Animais , Encéfalo/metabolismo , Ceco , Cognição/efeitos dos fármacos , Disfunção Cognitiva/fisiopatologia , Modelos Animais de Doenças , Endopeptidases/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/fisiologia , Hipocampo/metabolismo , Inflamação/metabolismo , Inibição Psicológica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Atividade Motora/efeitos dos fármacos , Neuroimunomodulação/fisiologia , Óxido Nítrico Sintase Tipo II/metabolismo , Sepse/complicações , Ubiquitina Tiolesterase/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...